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Abstract

A growing number of studies have focused on evaluating spectral indices in terms of their sensitivity to vegetation biophysical

parameters, as well as to external factors affecting canopy reflectance. In this context, leaf and canopy radiative transfer models are valuable

for modeling and understanding the behavior of such indices. In the present work, PROSPECT and SAILH models have been used to

simulate a wide range of crop canopy reflectances in an attempt to study the sensitivity of a set of vegetation indices to green leaf area index

(LAI), and to modify some of them in order to enhance their responsivity to LAI variations. The aim of the paper was to present a method for

minimizing the effect of leaf chlorophyll content on the prediction of green LAI, and to develop new algorithms that adequately predict the

LAI of crop canopies. Analyses based on both simulated and real hyperspectral data were carried out to compare performances of existing

vegetation indices (Normalized Difference Vegetation Index [NDVI], Renormalized Difference Vegetation Index [RDVI], Modified Simple

Ratio [MSR], Soil-Adjusted Vegetation Index [SAVI], Soil and Atmospherically Resistant Vegetation Index [SARVI], MSAVI, Triangular

Vegetation Index [TVI], and Modified Chlorophyll Absorption Ratio Index [MCARI]) and to design new ones (MTVI1, MCARI1, MTVI2,

and MCARI2) that are both less sensitive to chlorophyll content variations and linearly related to green LAI. Thorough analyses showed that

the above existing vegetation indices were either sensitive to chlorophyll concentration changes or affected by saturation at high LAI levels.

Conversely, two of the spectral indices developed as a part of this study, a modified triangular vegetation index (MTVI2) and a modified

chlorophyll absorption ratio index (MCARI2), proved to be the best predictors of green LAI. Related predictive algorithms were tested on

CASI (Compact Airborne Spectrographic Imager) hyperspectral images and, then, validated using ground truth measurements. The latter

were collected simultaneously with image acquisition for different crop types (soybean, corn, and wheat), at different growth stages, and

under various fertilization treatments. Prediction power analysis of proposed algorithms based on MCARI2 and MTVI2 resulted in

agreements between modeled and ground measurement of non-destructive LAI, with coefficients of determination (r2) being 0.98 for

soybean, 0.89 for corn, and 0.74 for wheat. The corresponding RMSE for LAI were estimated at 0.28, 0.46, and 0.85, respectively.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Green leaf area index (LAI) is a key variable used by

crop physiologists and modelers for estimating foliage

cover, as well as forecasting crop growth and yield. Its
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determination is critical for understanding biophysical pro-

cesses of forest and crop canopies and for predicting their

growth and productivity (Daughtry et al., 1992; Goetz &

Prince, 1996; Liu et al., 1997; Moran et al., 1995, 1997;

Tucker et al., 1980). The expression ‘‘green LAI’’, used in

this paper, represents the LAI of living leaves regardless to

their photosynthetic capacity. Living leaves can have similar

structural characteristics but various pigment contents (i.e.,
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chlorophyll). The exposed area of living leaves plays a key

role in various biophysical processes such as plant transpi-

ration and CO2 exchange. These functions are important for

understanding exchanges between the vegetation and the

atmosphere. Because LAI is functionally linked to the

canopy spectral reflectance, its retrieval from remote sens-

ing data has prompted many investigations and studies in

recent years. This has led to the development of different

techniques aiming to improve its estimation over large

areas, mainly through the use of spectral indices, model

inversions, and spectral mixture analysis. The latter has been

successfully used to define an end-member of interest,

determine its relative abundance, then correlate it with

ground-measured LAI; thus, more or less significant corre-

lation levels were found between LAI and sunlit fraction

(Hu et al., 2004), shadow fraction (Peddle & Johnson,

2000), and crop fraction (Pacheco et al., 2001). Only very

few studies have focused on inversion of sophisticated

radiative transfer models to retrieve green LAI of crop

canopies (Jacquemoud et al., 2000). The common and

widely used approach has been to develop relationships

between ground-measured LAI and vegetation indices

(Chen & Cihlar, 1996; Fassnacht et al., 1997; Spanner et

al., 1990). Consequently, a large number of relationships

have been established, and a wide range of determination

coefficients (0.05 < r2 < 0.66) between satellite-derived

spectral indices and LAI were found (Baret & Guyot,

1991; Brown et al., 2000; Chen, 1996).

During recent decades, substantial efforts were expended

in improving the Normalized Difference Vegetation Index

(NDVI) and in developing new indices aiming to compen-

sate for soil background influences (Bannari et al., 1996;

Baret et al., 1989; Huete, 1988; Qi et al., 1994; Rondeaux et

al., 1996), as well as for atmospheric effects (Karnieli et al.,

2001; Kaufman & Tanre, 1992). Even though the external

perturbing factors related to changes in soil brightness and

atmospheric conditions were taken into account, vegetation

indices still have definite intrinsic limitations; they are not a

single measure of a specific variable of interest such as

pigment content, plant geometry, or canopy architecture. So

far, it has not been possible to design an index which is

sensitive only to the desired variable and totally insensitive

to all other vegetation parameters (Govaerts et al., 1999).

Therefore, different indices were defined for different pur-

poses, and optimized to assess a process of interest. For

instance, some spectral indices were proposed to capture the

photochemical processes associated with photosynthesis

activity such as light use efficiency or to estimate leaf

pigment content (Broge & Leblanc, 2000; Chappelle et

al., 1992; Daughtry et al., 2000; Gamon et al., 1992;

Haboudane et al., 2002; Kim et al., 1994). Others were

designed to retrieve LAI (Brown et al., 2000; Chen, 1996)

or to quantify vegetation fraction (Gitelson et al., 2001).

A major problem in the use of these indices arises from

the fact that canopy reflectance, in the visible and near-

infrared, is strongly dependent on both structural (e.g., LAI)
and biochemical properties (e.g., chlorophyll) of the canopy

(Goel, 1988; Jacquemoud et al., 2000; Zarco-Tejada et al.,

2001). Moreover, LAI and chlorophyll content have similar

effects on canopy reflectance particularly in the spectral

region from the green (550 nm) to the red edge (750 nm). To

uncouple their combined effect, recent studies (Daughtry et

al., 2000; Haboudane et al., 2002) have demonstrated that

leaf chlorophyll content can be estimated with minimal

confounding effects due to LAI through a combination of

two kinds of spectral indices: indices sensitive to pigment

concentration and indices resistant to soil optical properties

influence. Conversely, no studies have focused on the

retrieval of LAI without interference of chlorophyll effects.

The latter generate a considerable scatter in the relationship

between LAI and the vegetation index of choice.

In practice, LAI prediction from remotely sensed data

faces two major difficulties: (1) vegetation indices approach

a saturation level asymptotically when LAI exceeds 2 to 5,

depending on the type of vegetation index; (2) there is no

unique relationship between LAI and a vegetation index of

choice, but rather a family of relationships, each a function

of chlorophyll content and/or other canopy characteristics.

To address these issues, a few studies have been carried out

to assess and compare various vegetation indices in terms of

their stability and their prediction power of LAI (Baret &

Guyot, 1991; Broge & Leblanc, 2000) while others have

dealt with modifying some vegetation indices to improve

their linearity with, and increase their sensitivity to, LAI

(Chen, 1996; Brown et al., 2000; Nemani et al., 1993).

Consequently, some indices have been identified as best

estimators of LAI because they are less sensitive to the

variation of external parameters affecting the spectral re-

flectance of the canopy, namely soil optical properties,

illumination geometry, and atmospheric conditions. How-

ever, the effect of leaf chlorophyll variations on the LAI–

vegetation index relationship remains an unsolved problem.

How does chlorophyll concentration influence the behavior

of a vegetation index of choice? Which of these indices,

suitable to LAI prediction, is least sensitive to chlorophyll

changes? Is there a single LAI versus vegetation index curve

for a wide range of leaf chlorophyll content?

The need for an answer to these questions has inspired

the present study as a contribution to improving the use of

hyperspectral remote sensing to predict LAI in the context

of precision farming. The main purpose is to suggest a

spectral index that is suitable to simply, and yet accurately,

determine LAI of crop canopies for agriculture management

purposes. The research focuses on reducing the variability in

LAI estimates due to changes in leaf chlorophyll con-

centration. To achieve these objectives, PROSPECT and

SAILH radiative transfer models were used to simulate crop

canopy reflectance for various biochemical, structural and

observation conditions, then a set of indices that have

proven to be resistant to atmospheric and soil brightness

effects were assessed in terms of their responsivity/resis-

tance to chlorophyll content variability. Another objective
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was to validate the modeling approach through the applica-

tion to airborne hyperspectral data and the comparison with

field measurements carried out simultaneously with image

acquisition.
2. Methods

2.1. The study area

The study area is located at the former Greenbelt Farm of

Agriculture and Agri-Food Canada (45j18VN, 75j45VW,

Ottawa, Canada). Over three successive years, different

crops (corn, wheat, soybean) were grown on a 30-ha field

with a drained clay loam soil as well as on adjacent fields

managed by private producers. Prior knowledge of the field

management and plant stress patterns helped in selecting

ground truth sites of contrasting productivity in order to test

the performance of predictive algorithms developed through

modeling and scaling up approaches, and to validate the

results of the algorithms’ application to CASI airborne

hyperspectral images. The sites were thus located to pro-

mote the development of remote sensing techniques for

detection of plant stresses (particularly nitrogen deficiency,

water deficit and low organic matter in the soil root zone) in

precision agriculture. Details on the field in situ instrumen-

tation and measuring approaches are presented in Pattey et

al. (2001) and in Strachan et al. (2002).

2.2. Airborne and field data

Hyperspectral images were acquired by the Compact

Airborne Spectrographic Imager (CASI, Calgary, Canada),

flown by the Centre for Research in Earth and Space

Technology (CRESTech). At the same time, a comprehen-

sive field and laboratory database was assembled which

included measurements of leaf reflectance and transmittance

measurements using an integrating sphere (Li-Cor model

1800-12, Lincoln, NE) coupled by a single mode optic fibre

to a spectrometer (GER1500, GER, Millbrook, NY), and

leaf area index (LAI) using the Plant Canopy Analyzer

(LAI-2000; Li-Cor) set for quantifying non-destructive total

LAI and an area meter (LI-3100, Li-Cor) for determining

separately destructive LAI of green and dead leaves. The

destructive leaf area measurements were used to calculate

the proportion of green LAI. Non-destructive LAI measure-

ments were then multiplied by green leaf area proportion to

calculate green LAI on a wider spatial area basis.

During the 2000 and 2001 growing seasons, CASI

hyperspectral images were collected in three different

deployments, using two modes of operation: the multispec-

tral mode, with 1-m spatial resolution and 7 spectral bands

suitable for sensing vegetation properties (489.51, 554.98,

624.63, 681.42, 706.12, 742.31, and 776.69 nm); and the

hyperspectral mode, with 2-m spatial resolution and 72

channels covering the visible and near infrared portions of
the solar spectrum from 408 to 947 nm with a bandwidth of

7.5 nm. Acquisition dates were planned to coincide with

different phenological development stages, providing image

data covering the early vegetative, active growth and

reproductive periods of each growing season. In this study

we used four images acquired in 2000, and three images

acquired in 2001. In 1999, only one hyperspectral image

was acquired on August 23rd.

2.3. CASI hyperspectral data processing

The processing of CASI imagery included the following

separate stages: raw data to radiance transformation, atmo-

spheric corrections and reflectance retrieval, removal of

aircraft motion effects and geo-referencing, and flat field

adjustments of surface reflectance spectra.

The hyperspectral digital images collected by CASI were

processed to at-sensor radiance using calibration coefficients

determined in the laboratory by CRESTech. The CAM5S

atmospheric correction model (O’Neill et al., 1997) was

then used to transform the relative at-sensor radiance to

absolute ground-reflectance. To perform this operation, an

estimate of aerosol optical depth at 550 nm was derived

from ground sun-photometer measurements. Reflectance

spectra of asphalt and concrete within CASI imagery were

used to calculate coefficients that adequately compensate for

residual effects of atmospheric water and oxygen absorp-

tion, and therefore to perform the flat field calibration. Data

regarding geographic position, illumination and viewing

geometry as well as ground and sensor altitudes were

derived both from aircraft navigation data recordings and

ground DGPS measurements.

2.4. Crop canopy reflectance simulations

Leaf optical properties were simulated using the PROS-

PECT model (Jacquemoud & Baret, 1990; Jacquemoud et

al., 1996), which simulates upward and downward hemi-

spherical radiation fluxes between 400 and 2500 nm, and

relates foliar biochemistry and scattering parameters to leaf

reflectance and transmittance spectra. It requires the leaf

internal structure parameter N, the chlorophyll a + b content

Cab (Ag cm� 2), the equivalent water thickness Cw (cm),

and the leaf dry matter content Cm (g cm� 2) to determine

leaf reflectance and transmittance signatures in the optical

domain.

Input parameters Cw and Cm were assigned the nominal

values of 0.0015 cm and 0.0035 g cm� 2, respectively. The

parameter N has been estimated by inverting the PROS-

PECT model on corn reflectance and transmittance spectra

measured in the laboratory using an integrating sphere

coupled to a spectrometer. The mean value 1.41 was thereby

obtained, and is in agreement with the value (N = 1.4) used

for corn plants by Jacquemoud et al. (2000). We have also

used N = 1.55 as an average value for various crops,

including corn, soybean, and wheat. With these inputs,
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reflectance and transmittance spectra were generated for

chlorophyll content varying from 5 to 100 Ag cm� 2 for the

purpose of simulating corn canopy reflectance (SAILH

model) for a wide range of chlorophyll concentrations.

Canopy reflectance spectra were simulated using a

variant of the SAIL (Scattering by Arbitrary Inclined

Leaves) model (Verhoef, 1984) called SAILH. It was

adapted to take into account the hotspot effect or the

multiple scattering in the canopy (Kuusk, 1985). It is a

turbid-medium model that approximates the canopy as a

horizontally uniform parallel-plane infinitely extended

medium, with diffusely reflecting and transmitting ele-

ments. Discussions and mathematical formalisms of SAIL

and SAILH are provided by Goel (1988, 1989), Verhoef

(1984, 1998), and Zarco-Tejada (2000). Typical SAILH

inputs are (Table 1): canopy architecture defined by the

leaf area index (LAI) and the leaf angle distribution

function (LADF), leaf reflectance and transmittance spec-

tra for given chlorophyll content per unit area, underlying

soil reflectance, and the illumination and viewing geom-

etry (solar zenith and sensor viewing angles).

2.5. Spectral vegetation indices selected for this research

Several optical indices have been reported in the liter-

ature and have been proven to be well correlated with

various vegetation parameters such as LAI, biomass,

chlorophyll concentration, photosynthetic activity, and

more. Exhaustive comparative studies have been already

carried out to assess the prediction power of different

optical indices and their sensitivity to various canopy

parameters and external factors (e.g., Bannari et al.,

1995; Baret & Guyot, 1991; Broge & Leblanc, 2000;

Chen, 1996; Karnieli et al., 2001; Zarco-Tejada, 2000).

Much effort has been expended to improve vegetation

indices and render them insensitive to variations in illu-

mination conditions, observing geometry, and soil proper-

ties. Thus, the performance and the suitability of a

particular index are generally determined by the sensitivity
Table 1

Input variables for SAILH model

SAILH input variables Description/values

Leaf optical properties Simulated reflectance and transmittance

(PROSPECT) for various chlorophyll

content, from 5 to 1000 Ag cm� 2, in

5 Ag cm� 2 steps

Soil reflectance Reflectance spectrum of a developed

soil (400–2400 nm)

Leaf area index 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12

Lead angle distribution

function (LADF)

Spherical

Sun zenith angle 35j and 45j
Sensor viewing angle 0j (nadir)

Fraction of direct

coming radiation

1

of the index to a characteristic of interest. For this reason,

and based on the conclusions of the above-mentioned

studies, indices specifically designed to detect leaf pig-

ments, vegetation stress, or vegetation fraction will not be

considered in this study. Rather, a few of the most

common vegetation indices were selected and regrouped

into three categories according to their formalism and their

adherence to the same family.

2.6. Indices based on the normalized difference: improving

the linearity

The most known and widely used vegetation index is the

Normalized Difference Vegetation Index (NDVI) developed

by Rouse et al. (1974). It is based on the contrast between

the maximum absorption in the red due to chlorophyll

pigments and the maximum reflection in the infrared caused

by leaf cellular structure. Using hyperspectral narrow bands,

this index is quantified by the following equation where Rx

is the reflectance at the given wavelength (nm):

NDVI ¼ ðR800 � R670Þ=ðR800 þ R670Þ ð1Þ

Despite its intensive use, NDVI saturates in cases of

dense and multi-layered canopy and shows a non-linear

relationship with biophysical parameters such as green LAI

(Baret & Guyot, 1991; Lillesaeter, 1982). Therefore, im-

proved indices like the Renormalized Difference Vegetation

Index (RDVI; Rougean & Breon, 1995) and the Modified

Simple Ratio (MSR; Chen, 1996) have been developed in

order to linearize their relationships with vegetation bio-

physical variables. The RDVI (Eq. (2)) was proposed to

combine the advantages of the Difference Vegetation Index

(DVI =NIR�Red; Jordan, 1969) and the NDVI for low

and high LAI values, respectively.

RDVI ¼ ðR800 � R670Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR800 þ R670Þ

p
ð2Þ

MSR (Eq. (3)) was suggested as an improvement over

RDVI in terms of sensitivity to vegetation biophysical

parameters through its combination with the Simple Ratio

(SR =NIR/Red; Jordan, 1969). SR and MSR are considered

more linearly related to vegetation parameters:

MSR ¼ R800

R670

� 1

� �, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R800

R670

þ 1

� �s
ð3Þ

2.7. Soil– line vegetation indices: improving the resistance

to soil and atmospheric effects

To account for changes in the soil optical properties, soil-

adjusted indices minimizing the background influence have

been developed. The leading index in such improvement is

the Soil-Adjusted Vegetation Index (SAVI; Huete, 1988),
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which includes a canopy background adjustment factor L.

Using narrow bands, SAVI is formulated as:

SAVI ¼ ð1þ LÞðR800 � R670Þ=ðR800 þ R670 þ LÞ ð4Þ

The factor L is a function of vegetation density, and its

determination requires a prior knowledge of vegetation

amounts (Huete, 1988). The value of factor L is critical

in the minimization of soil optical properties effects on

vegetation reflectance. Huete (1988) suggested an optimal

value of L= 0.5 to account for first-order soil background

variations. Attempting to improve SAVI with regard to the

differences in soil background, Qi et al. (1994) developed

an improved SAVI (MSAVI) with a self-adjustment factor

L that does not appear in the formulation of MSAVI. Using

hyperspectral bands, MSAVI is calculated as:

MSAVI

¼ 1

2
2R800 þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2R800 þ 1Þ2 � 8ðR800 � R670Þ

q� 	
ð5Þ

A recent study by Broge and Leblanc (2000) using

radiative transfer models has found that MSAVI is the best

LAI estimator in terms of sensitivity to canopy effects. It

proved to be less affected by variations in canopy param-

eters as well as soil spectral properties. Furthermore, it was

the best LAI estimator in dense canopies.

To minimize atmospheric-induced variations in NDVI,

Kaufman and Tanre (1992) have corrected the red radiance

for aerosol effect by incorporating the blue channel. The

corrected red channel is obtained using the following

formula where subscripts r and b denote the red and blue

bands, respectively:

Rrb ¼ Rr � cðRb � RrÞ ð6Þ

The authors recommend a value of 1 for the function c. This
led to the development of the Soil and Atmospherically

Resistant Vegetation Index (SARVI), which minimizes both

canopy background and atmospheric effects (Kaufman &

Tanre, 1992):

SARVI ¼ ð1þ LÞðR800 � RrbÞ=ðR800 þ Rrb þ LÞ ð7Þ

2.8. New vegetation indices based on three discrete bands

Indices incorporating bands in the green and red-edge

parts of the solar spectrum were developed to measure the

light absorption by chlorophyll in the red region (670 nm).

Kim et al. (1994) introduced the ratio (R700/R670) to mini-

mize the combined effects of the underlying soil reflectance

and the canopy non-photosynthetic materials, while Gitel-

son and Merzlyak (1996) have found a strong correlation

between leaf chlorophyll concentration and the reflectance

ratios (R750/R550) and (R750/R700).
Kim et al. (1994) developed the Chlorophyll Absorption

Ratio Index (CARI) which measures the depth of chloro-

phyll absorption at 670 nm relative to the green reflectance

peak at 550 nm and the reflectance 700 nm. The CARI was,

then, simplified by Daughtry et al. (2000) to obtain the

Modified Chlorophyll Absorption Ratio Index (MCARI),

which is quantified by the following equation:

MCARI ¼ ½ðR700 � R670Þ � 0:2ðR700 � R550Þ�ðR700=R670Þ
ð8Þ

Even though MCARI was developed to be responsive to

chlorophyll variation in the first place, Daughtry et al.

(2000) found that LAI, chlorophyll, and chlorophyll–LAI

interaction accounted, respectively, for 60%, 27%, and 13%

of MCARI variation. Therefore, MCARI holds a great

potential for LAI predictions albeit no near-infrared band

(or wavelength) was considered in its formulation.

Inspired by the general idea of CARI, Broge and Leblanc

(2000) developed the Triangular Vegetation Index (TVI),

which is meant to characterize the radiant energy absorbed

by leaf pigments in terms of the relative difference between

red and near-infrared reflectance in conjunction with the

magnitude of reflectance in the green region. TVI is

determined as the area defined by the green peak, the

near-infrared shoulder, and the minimum reflectance in the

red region. It is formulated as:

TVI ¼ 0:5½120ðR750 � R550Þ � 200ðR670 � R550Þ� ð9Þ

The general idea behind TVI is based on the fact that

the total area of the triangle (green, red, infrared) will

increase as a result of chlorophyll absorption (decrease of

red reflectance) and leaf tissue abundance (increase of

near-infrared reflectance) (Broge & Leblanc, 2000). While

this remains true, it is important to notice that the increase

of chlorophyll concentration also results in the decrease of

the green reflectance, leading, therefore, to a relative

decrease of the triangle area. Furthermore, although there

is no chlorophyll absorption beyond 700 nm, chlorophyll

indirect effects on the vegetation reflectance curve remain

observable around the red edge position up to 750 nm. In

fact, as chlorophyll content increases, its absorption feature

broadens and causes the red-shift of the red-edge reflec-

tances. Consequently, the canopy reflectance at 750 nm is

still influenced by leaf chlorophyll content.

2.9. Improved new vegetation indices for green LAI

predictions

As a part of this study, we developed modified versions of

these new indices that are suitable to LAI estimation from

remote sensing data. The general idea behind these modifi-

cations was to render these indices (MCARI and TVI) less

sensitive to chlorophyll effects, more responsive to green LAI

variations, and more resistant to soil and atmosphere effects.
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For this reason, we suggest the introduction of two main

changes to MCARI: the suppression of the ratio (R700/R670)

in order to lower the sensitivity to chlorophyll effects, and

the integration of a near-infrared wavelength to increase the

sensitivity to LAI changes. Consequently, Eq. (8) is simpli-

fied, and a variant of MCARI is obtained and denoted

MCARI1. It is formulated as

MCARI1 ¼ 1:2½2:5ðR800 � R670Þ � 1:3ðR800 � R550Þ� ð10Þ

Regarding TVI, the transformation is based on the fact

that the increase of the chlorophyll concentration causes a

red-shift of red-edge reflectances, introducing changes to

reflectance at 750 nm which represents the beginning of

the infrared shoulder. To make TVI suitable for LAI

estimations, the 750 nm wavelength was replaced by

the 800 nm wavelength, the reflectance of which is

influenced by the changes in leaf and canopy structures,

and is insensitive to pigment level changes. Applying a

scale factor, we defined a modified TVI (denoted MTVI1)

according to:

MTVI1 ¼ 1:2½1:2ðR800 � R550Þ � 2:5ðR670 � R550Þ� ð11Þ

To reduce soil contamination effects, we incorporated a

soil adjustment factor, using the concept developed by

Huete (1988). This term was optimized with the constraint

of preserving the sensitivity to LAI as well as the resistance

to chlorophyll influence. Consequently, improved versions

of MCARI and TVI were formulated as:

MCARI2 ¼ 1:5½2:5ðR800 � R670Þ � 1:3ðR800 � R550Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2R800 þ 1Þ2 � ð6R800 � 5

ffiffiffiffiffiffiffiffiffi
R670

p
Þ � 0:5

q
ð12Þ

MTVI2 ¼ 1:5½1:2ðR800 � R550Þ � 2:5ðR670 � R550Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2R800 þ 1Þ2 � ð6R800 � 5

ffiffiffiffiffiffiffiffiffi
R670

p
Þ � 0:5

q
ð13Þ

These two indices were used to determine green LAI

predicting functions, which were based on simulations with

PROSPECT and SAILH radiative transfer models, as well as

on an optical-index scaling-up approach discussed in detail

in Zarco-Tejada et al. (2001). Performances of all the indices

presented in this section, as well as results of the proposed

approach are presented, discussed and compared to ground

truth measurements in the following section.
3. Results and analysis

3.1. Sensitivity to chlorophyll effects and saturation level:

simulated data

The relationships between vegetation indices and green

LAI are not unique, they exhibit a considerable scatter
caused by chlorophyll content variation and/or the influence

of other canopy characteristics. In fact, the indices are

designed to measure vegetation greenness in which chloro-

phyll content plays a major role beside the amount of green

leaves. To understand this influence, vegetation indices

selected for this study are plotted against green LAI as a

function of chlorophyll concentrations (Figs. 1 and 2); the

curves represent chlorophyll content varying from 20 to

100Ag cm� 2 with an increment of 5 Ag cm� 2. In these

figures, scaling factors were applied to MSR and TVI in

order to have their values scaled between 0 and 1 for

comparison with other indices. As can be seen, all indices

behave logarithmically rather than linearly with LAI.

MCARI and MSR are the most affected by chlorophyll

variability, showing high sensitivity even at high chloro-

phyll levels (up to 60 Ag cm� 2). This can be explained by

the integration in their formulae of ratios that are highly

correlated to leaf and canopy chlorophyll content: (R700/

R670) and (R800/R670), respectively. Such a behavior is

expected, in the case of MCARI, which was designed to

measure the chlorophyll influence in the red and red-edge

regions, but is intriguing in the case of MSR, which is

defined to estimate LAI in forest landscapes. Moreover,

MSR is meant to improve the linearity and overcome the

saturation limits of RDVI. This is true, but only at high

levels of canopy chlorophyll content (Fig. 1), which is

generally more applicable to forestry than to agriculture.

MSAVI and NDVI exhibit a similar resistance to chlo-

rophyll content variability, with clear sensitivity only at to

low and low-medium chlorophyll concentrations (less than

35 Ag cm� 2). The main difference between these two

indices resides in the saturation effect when LAI increases:

NDVI reaches a saturation level asymptotically when LAI

exceeds 2, while MSAVI shows a better trend without a

clear saturation at high LAI levels (up to 6) (Fig. 1). This

explains, in part, why MSAVI has proven to be a better

indicator of greenness measure (Broge & Leblanc, 2000).

Indices RDVI, SAVI, and SARVI show a very similar

behavior in many regards. They are less sensitive to chlo-

rophyll content than both NDVI and MSAVI, they have a

relatively limited dynamic (values comprised between 0.05

and 0.75), and they are less affected by saturation than

NDVI, but more than MSAVI. Despite their relative insen-

sitivity to low chlorophyll effects, these indices are not good

for characterization of greenness of dense canopies with

high LAI (LAI>4) (Fig. 1).

The Triangular Vegetation Index (TVI) seems to be a

good candidate for green LAI estimations, but its sensitivity

to chlorophyll content increases with the increase of canopy

density as illustrated by Fig. 1 (LAI>4). This finding is

based on the concept behind the TVI itself (triangle area)

and the use of the wavelength 750 nm. In fact, the increase

of chlorophyll concentration causes the increase of the

triangle area, and at the same time it moves the near-infrared

shoulder to longer wavelengths (higher than 750 nm).

Therefore, beyond a certain level of canopy development,



Fig. 1. Effects of chlorophyll concentration variation on the relationships

between vegetation indices and green leaf area index (LAI). Application to

canopy reflectance simulated using PROSPECT and SAILH. The curves

correspond to various chlorophyll concentrations ranging from 20 to 100 Ag
cm� 2 with steps of 5 Ag cm� 2. For clarity purposes, MSAVI was scaled up

by adding 0.1.
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the use of 750 nm does not capture variations due only to

LAI, and triangle area changes are mainly controlled by

variations in chlorophyll concentration.

The best behavior in terms of both resistance to pig-

ments variation and responsiveness to LAI changes is

given by the improved indices MTVI1 and MCARI1

(Fig. 2). They offer the advantage of being more or less

resistant to chlorophyll changes and the least sensitive to

the saturation phenomena. Indeed, MTVI1 and MCARI1

can have a unique relationship with green LAI, with

almost no significant influence of chlorophyll changes

between 20 and 100 Ag cm� 2 (Fig. 2). Their counterparts,

MTVI2 and MCARI2, lead to similar performances with a

slight difference in the dynamic at high LAI values.

MTVI2 and MCARI2 show a similar behavior as MSAVI,

but have the advantage of being less sensitive to chloro-

phyll concentration changes.
Fig. 2. Relationships between the modified vegetation indices (MTVI1,

MCARI1, MTVI2, and MCARI2) and green leaf area index (LAI).

Application to canopy reflectance simulated using PROSPECT and SAILH.

The curves correspond to various chlorophyll concentrations ranging from

20 to 100 Ag cm� 2 with a step of 5 Ag cm� 2. For clarity purposes,

MCARI1 and MTVI2 were scaled up by adding 0.1 and 0.08, respectively.



Fig. 3. Relationships between the evaluated spectral indices and the near-

infrared (NIR) reflectance from CASI hyperspectral images collected over

different crops (corn, wheat, and soybean). For clarity purposes, MCARI2

was scaled down by subtracting 0.15.
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3.2. Linearity analysis: real CASI hyperspectral data

To assess differences in vegetation indices behavior, we

extracted spectral reflectance signatures from CASI hyper-

spectral images collected during summers of 1999, 2000,

and 2001, over agricultural fields with three crop types:

corn, wheat, and soybean. We then plotted the indices

against the near-infrared (NIR) reflectance (Fig. 3) in order

to compare each index’s ability to depict green LAI varia-

tions. For comparison clarity, some indices are plotted in

more than one scatterplot. The rationale for this analysis was

that the NIR reflectance is strongly affected by changes in

vegetation structural descriptors rather than by pigment

variation. In fact, while visible bands (namely red) are

sensitive to soil background effects, the NIR offers the best

discrimination of vegetation structural variations.

Distinct behaviors were clearly identifiable in Fig. 3 with

respect to the increase of NIR reflectance. As expected,

NDVI showed the weakest correlation with NIR reflectance,

and became saturated at approximately 0.91 when NIR

increased from 0.35 to 0.80. It showed little sensitivity to

the variations in green vegetation density. MSR exhibited a

similar behavior, which is coupled with a considerable

scatter in the relationship MSR–NIR. Indeed, MSR satu-

rated for NIR values ranging from 0.45 to 0.80, and

presented a substantial dispersion of its values due to its

sensitivity to the red reflectances. To explain this perfor-

mance, we used the same CASI hyperspectral dataset to plot

various NIR–Red combinations as a function of NIR

reflectance (Fig. 4). We found that the addition (NIR +Red)

and subtraction (NIR�Red) were linearly and strongly

correlated to NIR reflectance changes, while the product

(NIR*Red) and the ratio (NIR/Red) exhibited a positive

correlation but a very scattered relationship with NIR

reflectance. It is important to mention that the product and

the ratio were scaled for comparison purposes (Fig. 4).

Consequently, indices using the ratio or the product of

NIR and Red wavelengths are very sensitive to chlorophyll

content variations, and are not good estimates of green LAI

dynamics.

In contrast with NDVI and MSR, indices RDVI, SAVI,

MSAVI, and SARVI behaved quite differently (Fig. 3); they

appeared to be much more responsive to NIR reflectance

changes. Nevertheless, their linear relationship with NIR

reflectance is characterized by a slope change around

NIR = 0.45. They increased substantially with the increase

of NIR, then followed a slight asymptotic trend at higher

NIR values. Although MSAVI exhibited some scattering, it

provided the best performance of its group, with a better

dynamic (best average slope) for NIR values ranging from

0.23 to 0.60. This is consistent with the findings of Broge

and Leblanc (2000) who concluded that MSAVI was the

best LAI estimator in dense canopies.

Overall, the best linear relationship between NIR reflec-

tance and vegetation indices is offered by the indices

MTVI1, MCARI1, MTVI2, and MCARI2. They showed
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clear linear relationships without a pronounced change of

the slope, as well as no asymptotic trend at higher NIR

reflectance values (Fig. 3). However, MTVI1 and MCARI1



Fig. 4. Relationships between the near-infrared (NIR) reflectance and Red–

NIR combinations, from CASI hyperspectral images collected over

different crops (corn, wheat, and soybean). For clarity purposes, NIR/Red

and NIR*Red were multiplied by factors of 0.025 and 30, respectively.

Fig. 5. Relationships between the near-infrared (NIR) reflectance and

wavebands combinations, from CASI hyperspectral images collected over

different crops (corn, wheat, and soybean). For clarity purposes, the

difference Green�Red was multiplied by a factor of 4.
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are strongly coupled with NIR reflectances, providing the

best overall dynamic with a constant slope for the whole

range of NIR reflectance. This behavior is due to the

formalism of these indices which use only a combination

of waveband differences. Indeed, as can be seen in Fig. 5, the

difference (NIR�Green) is strongly correlated with canopy

NIR reflectance. Conversely, the difference (Green�Red) is

not linearly related to the NIR reflectance, but it is

important to notice that its low values are dominated by

those of the difference (NIR�Green) in the calculation of

MTVI variants.

3.3. Green LAI estimation: predictive functions

To estimate LAI from remotely sensed data, empirical

relationships between LAI and spectral indices were pro-

posed. Equations describing these relationships vary in both

mathematical forms (linear, exponential, power, inverse of

exponential, etc.) and empirical coefficients, depending on

the experiments, the indices used, and the vegetation type

(Chen et al., 2002; Gilabert et al., 1996; Matsushita &

Tamura, 2002; Qi et al., 2000). The common procedure

was to establish an empirical relationship between a given

spectral index and LAI by statistically fitting measured LAI

values and corresponding values of that spectral index. In

the current study, empirical relationships were determined

from simulated data using PROSPECT and SAILH models.

Predictive equations were developed for leaf chlorophyll

concentrations varying from 20 to 100 Ag cm� 2 and LAI

values ranging from 0.3 to 7. Best fits were obtained using

exponential functions, with coefficients of determination

(r2) exceeding 0.98. Based on the analyses presented above,

we have selected the following indices to estimate LAI from

CASI hyperspectral images: RDVI, TVI, MSAVI, and

MTVI2; selection criterion combines low sensitivity to
chlorophyll content changes and sensitivity to LAI in crops

with moderate to high density (LAI>3), as well as on the

results of previous studies (Broge & Leblanc, 2000). Their

predictive equations are as follows:

RDVI: LAI ¼ 0:0918expð6:0002RDVIÞ

TVI: LAI ¼ 0:1817expð4:1469TVIÞ

MSAVI: LAI ¼ 0:1663expð4:2731MSAVIÞ

MTVI2: LAI ¼ 0:2227expð3:6566MTVI2Þ

It is important to recall that these predictive equations

were developed from simulated data, under specific con-

ditions (Table 1): leaf dry matter content of 0.0035 g cm� 2,

background reflectance of a developed soil, zenith angle of

45j, structural parameter N of 1.55, and a spherical LADF.

Nevertheless, we have conducted other simulations with a

structural parameter of 1.41, and a solar zenith angle of 35j,
and found no difference in derived predictive equations.

However, further simulations, and thorough analyses are

required to assess the influence of these factors, the soil

background, the atmosphere, and the LADF on prediction

functions.

In analyses presented above, we have clearly demon-

strated that modified variants of MCARI and TVI, devel-

oped as a part of this research, were the most suitable for

LAI estimation from remote sensing data. First, they proved

to be the less sensitive to leaf chlorophyll variations, which

is the major factor that influences LAI retrieval from

reflectance data. Second, they presented the best linear

behavior with NIR reflectance extracted form CASI hyper-

spectral images, as well as with simulated LAI. Our calcu-



Table 3

Characteristics of the regression between observed and estimated LAI

values

Spectral index Slope Intercept r2 RMSE

Soybean

MTVI2 1.010 + 0.138 0.98 0.28

MSAVI 1.071 + 0.040 0.97 0.43

RDVI 1.195 � 0.061 0.95 0.75

TVI 1.445 � 0.142 0.80 1.86

Corn

MTVI2 1.027 + 0.025 0.89 0.46

MSAVI 1.121 � 0.050 0.88 0.58

RDVI 1.234 � 0.124 0.90 0.66

TVI 1.444 � 0.157 0.81 1.21

Wheat

MTVI2 0.808 � 0.166 0.74 0.85

MSAVI 0.873 � 0.212 0.75 0.79

RDVI 0.998 � 0.311 0.73 0.79

TVI 1.186 � 0.391 0.56 1.28

Corn, soybean, and wheat

MTVI2 1.046 + 0.016 0.95 0.43

MSAVI 1.114 � 0.040 0.93 0.55

RDVI 1.244 � 0.132 0.93 0.76

TVI 1.501 � 0.171 0.82 1.62
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lations have shown that MTVI1 and MCARI1 have the

disadvantage of overestimating green LAI. Consequently,

they were not included among the indices selected for

performance comparison in terms of predicting LAI. As

for MCARI2, it was discarded because it has generated

exactly the same results as MTVI2, owing to their similar

mathematical forms.

3.4. Algorithms testing and validation: CASI data and

ground truth

To test the above algorithms, we have used CASI hyper-

spectral images and corresponding ground truth measure-

ments collected over different fields with various crops

(soybean, corn, wheat) grown in different years (1999,

2000, 2001). Then, we have determined and assessed the

accuracy of green LAI predictions given by the four indices

RDVI, TVI, MSAVI, and MTVI2. Their predictive equa-

tions were applied to CASI images collected at different

dates of the growing season in order to represent early

vegetative, active, and reproductive growth stages. Then,

mean values of estimated LAI were calculated for each crop

type, for different nitrogen application rates, different drain-

age conditions, and for different growth stages captured in

three intensive field campaigns. Comparisons with ground

truth measurements using a combination of non-destructive

and destructive LAI to extract green LAI (Table 2) were

carried out, and corresponding results are presented in Figs.

6, 7, 8 and 10, and summarized in Table 3. For comparison

purposes, for each crop, the predictions of the four indices

were plotted against the ground truth on the same figure. As

a preliminary assessment, figures and regression parameters

(Table 3) show an excellent agreement between field meas-

urements and resulting estimates of the algorithms using

MSAVI and MTVI2 indices, with very consistent determi-

nation coefficients (r2>0.90).

As shown in Fig. 6 and Table 3, MTVI2 and MSAVI

predictions for soybean canopies have led to very high

coefficients of determination (r2>0.95), with root mean

square errors (RMSE) less than 0.50, and correlation slopes

close to one. As for RDVI and TVI, they have generated

slope of 1.20 and 1.45, respectively, expressing an overes-

timation at high LAI levels (LAI>5) in comparison to

observed LAI. It does not seem to be a measurement bias

as both the destructive and non-destructive LAI values were

within 0.5 at high LAI. Moreover, RDVI and TVI have
Table 2

Proportion of green LAI per crop and per intensive field campaigns (IFC)

covering different periods of the 2001 growing season: map (1) = early

growth stage (IFC1), map (2) =middle growth stage (IFC2), and map

(3) = latest growth stage (maturity) (IFC3)

Crop IFC1 IFC2 IFC3

Soybean 0.94–1.00 0.94–1.00 0.97–1.00

Corn 1.00 1.00 1.00

Wheat 0.97–1.00 0.90–0.99 0.40–0.84
resulted in higher RMSEs evaluated to 0.75 and 1.86,

respectively.

In the case of corn canopies, we have found a very

consistent agreement between LAI values measured in the

field and those estimated by MTVI2 and MSAVI, with

correlation slopes close to one, coefficients of determination

(r2) of 0.89 and 0.88, root mean square errors of 0.46 and

0.58, respectively (Fig. 7, Table 3). Independent data sets

over corn fields from other locations in Canada were used to

validate the algorithm; they led to similar results and were in
Fig. 6. Comparison between ground LAI measurements and green LAI

estimations from CASI images using MTVI2, MSAVI, RDVI, and TVI, for

soybean canopies.



Fig. 7. Comparison between ground LAI measurements and green LAI

estimations from CASI images using MTVI2, MSAVI, RDVI, and TVI, for

corn canopies.
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agreement with the expected inter-plot variability resulting

from nitrogen and weed treatments; high nitrogen supply

generated high values of LAI, while low nitrogen treatments

produced lower LAI values. Moreover, MTVI2 estimates

seem to be closer to the one-to-one line than MSAVI

estimates. These results contrast with those of RDVI and

TVI, which tend to overestimate the LAI in crop canopies

with high density. This is corroborated by the values of their

correlation slopes (1.21 and 1.41, respectively) and illus-

trated by their trend which diverts significantly from the

one-to-one line (Fig. 7).

The results are quite different for wheat canopies. As

can be seen in Fig. 8, the four indices behaved in two

distinct ways: during the early vegetative stage (IFC1),
Fig. 8. Comparison between ground LAI measurements and green LAI

estimations from CASI images using MTVI2, MSAVI, RDVI, and TVI for

wheat canopies.
MSAVI and MTVI2 have slightly followed the one-to-one

line while RDVI and TVI have overestimated wheat

canopy LAI; during the active growth and reproductive

periods (IFC1 and IFC2), all indices have led to an

underestimation of moderate to high LAI. Consequently,

regression characteristics (Table 3) were consistent but less

satisfactory: in comparison with corn and soybean cano-

pies, indices have generated moderate to good coefficients

of determination (ranging from 0.56 for TVI to 0.76 for

MSAVI), low correlation slopes, and relatively high RMSE

(0.79–1.28). According to our ground observation, the

differences occurred at maturity (dominated by the heads

of the wheat plant) and senescence stages (increase of

yellow and dry leaves). In fact, while the approach for

measuring non-destructive LAI using the LAI-2000 (Stra-

chan et al., 2004) measures all light intercepting leaves of

the plant (green and dead), our algorithm estimates only

the green LAI due to photosynthetic elements of the plant

(mainly green leaves). Indeed, the canopy reflectance

modeling, with PROPSECT and SAILH, does not take

into account the presence of stalks, heads, and senescent

leaves.

The effect of heads on wheat canopy reflectance is

illustrated in Fig. 9, which shows spectra extracted from

CASI hyperspectral images. They represent the same area

of wheat field (sandy soil) at two different periods of the

growing season: IFC1 corresponding to an active growth

period dominated by green leaves, and IFC3 representing

a reproductive canopy dominated by heads. It can be

clearly seen that the presence of heads (and senescent

leaves) induced a decrease in NIR reflectance, as well as

a decrease of chlorophyll absorption (increase of red

reflectance). Therefore, it has led to a reflectance spec-

trum that mimics a response of a canopy with low leaf

area index, which explains the underestimation of LAI

from hyperspectral images.
Fig. 9. Spectra of wheat canopies with dominating green leaves (active

growth) and heads (reproductive period), extracted from CASI hyper-

spectral images over a sandy area at two different dates: IFC1 (active

growth) and IFC3 (reproductive growth).
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Finally, when soybean, corn, and wheat were considered

together in the comparison between estimations and ground

truth (Fig. 10), very good measures of the correlation were

generated for MTVI2 and MSAVI: slopes close to one (1.05

and 1.11), excellent coefficients of determination (0.95 and

0.93), and reasonable RMSE (0.43 and 0.55). This signif-

icant result means that the proposed algorithm performs

very well over various crop canopies having different leaf

parameters, as well as different plant structures. These

important findings were corroborated by MTVI2 and

MSAVI algorithms testing on independent data sets ob-

tained over corn and peas canopies grown in different

locations in Quebec (Canada). Moreover, the data sets used

in this study were appropriate for assessing the temporal

evolution and the spatial variability of green LAI. Average

values of LAI as low as 0.2 were estimated in early growth

stages over plots with no nitrogen treatments, while average

values as high as 5.35 and 6.25 were predicted at maximum

growth for corn and soybean, respectively.

The analyses of the agreement between estimated and

measured green LAI have resulted in excellent coefficients

of determination (r2) and excellent RMSE values for

MTVI2 and MSAVI (Figs. 6, 7, 8 and 10; Table 3). In the

case of wheat canopy, regressions do not follow exactly the

one-to-one line, with slight biases expressed by non-zero

intercepts. The problem of non-unity slope and intercept

bias has been already reported in a study using models

inversion to infer chlorophyll content of soybean canopies

(Jacquemoud et al., 2000). It is not easy to single out a

specific factor that could be responsible for such biases

because a huge number of leaf and canopy descriptors were

used in both reflectance modeling and scaling-up approach.
Fig. 10. Comparison between ground LAI measurements and green LAI

estimations from CASI images using MTVI2, MSAVI, RDVI, and TVI, for

soybean, corn, and wheat canopies.
Indeed, while the effect of each scale-dependent descriptor

contributing to canopy reflectance is more or less well

defined, the modeling and the scaling-up do not incorporate

simultaneously the actual range of variation in plant char-

acteristics and canopy structure that occur in the field.

The application of the MTVI2-based algorithm to CASI

hyperspectral images, collected during the growing season

of summer 2001, allowed the generation of maps of green

LAI status of corn, wheat and soybean fields in terms of

spatial variability and temporal changes. Fig. 11 represents

green LAI maps corresponding to early (1), active (2), and

reproductive (3) growth periods as observed in three inten-

sive field campaigns (IFC1, IFC2, and IFC3). It clearly

indicates the observed differences between crop types and

phenological stages.

When the first CASI image was acquired (IFC1), the

wheat crop was in the tillering phase with only a few

advanced areas initiating the stem elongation phase. Ob-

served LAI ranged from 1 to 4.3 (estimated LAI between

0.5 and 4.9). At the same time, the corn crop had 3–6 fully

expanded leaves depending on the area (LAI < 0.2) and

soybean had two fully expanded trifoliates (LAI < 0.2).

The LAI variability within the wheat field is due in part

to nitrogen supply and water availability and also to spring

seeding conditions which influenced the dynamics of the

canopy development. The high LAI levels observed in the

northeastern portion (yellowish to reddish tones) of the

wheat field are in an area with low clay which received

the recommended nitrogen rate but was well drained fol-

lowing the wet spring enabling early and even emergence.

The lowest LAI levels detected in the northwestern portion

of the field (blue tones) result from topographic effects with

a slope heading toward the creek flowing between the wheat

and corn fields. The organic matter content was very low as

a result of erosion occurring in this area. The southwestern

square area (blue and cyan tones) of the field received only a

starter rate of nitrogen, which generated a lag in the crop

development. The diagonal strips (NW to SE) are filled

water channels, which naturally provide water to the crop

and thus are highly suitable for growth. The wheat field

patterns identified in IFC1 were persistent through IFC3 and

they are consistent with crop development. Indeed, the less

productive areas showed increasing LAI over time, which

indicated delays in the crop development, caused by the

sub-optimum environmental growth conditions. The more

productive areas exhibited decreasing LAI during IFC2 and

3 associated with heading, an indicator of a timely crop

development associated with favorable environmental con-

ditions (Fig. 11).

For both corn and soybean, LAI was continuously

increasing from low levels (blue tones during IFC1) to very

high levels (reddish and pink tones during IFC3). The corn

canopy had a rapid leaf production between IFC2 and 3

growing from 6–9 fully expanded leaves to 8–13 fully

expanded leaves with tassels emerged in productive zones.

Observed and estimated green LAI were in the same range



  

Fig. 11. Maps of green LAI determined with MTVI2-based algorithm from CASI hyperspectral images collected over the Former Greembelt Farm of

Agriculture and Agri-Food Canada (Ottawa, Ontario, Canada). They represent three crops (corn in the northern portion, wheat in the middle, and soybean in the

southern portion) observed in three intensive field campaigns (IFC) covering different periods of the 2001 growing season: map (1) = early growth stage (IFC1),

map (2) =middle growth stage (IFC2), and map (3) = latest growth stage (maturity) (IFC3).
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increasing from 0.1–0.4 in IFC1, to 1–3 in IFC2 and to 3–

4.5 in IFC3 (Fig. 7). The area in IFC 3 with LAI>5 (light red

and pink) had very high yield (data not shown), while the

area with lower LAI (yellow) ended with below average

yield, with identifiable patterns for both cases. The soybean

canopy reached blooming onset in some areas during IFC2

and setting pods during IFC3. The soybean cultivar was

indeterminate ideotype, which means that it continued to

produce leaves during the reproductive phase. Estimated

and observed green LAI were similar for IFC1 and IFC 2,

but appeared slightly overestimated during IFC3 (Fig. 6).

However, a wide range of LAI (4–7 m2 m� 2) is estimated

for IFC3, with a dense pattern of variation (Fig. 11). The

high estimated green LAI values are in the range of values

reported in the literature where maximum values are

reported ranging from 6.5 to 9.0 depending on plant

densities (Pengelly et al., 1999). Each IFC covered a wide
span of green LAI with flight lines encompassing three

different field crops. This wide range of LAI was verified by

detailed ground-truth observations obtained within contrast-

ing productivity areas.
4. Conclusions

Quantification of the canopy leaf area index (LAI) and its

spatial distribution provides an avenue to improve the

interpretation of remotely sensed data over vegetated areas,

as well as valuable information to aid the development of

approaches for ecosystem functioning and ecosystem pro-

ductivity. Due to the complexity of the relationship between

canopy reflectance and its biochemical components and

structural descriptors, the present study used the radiative

transfer model, PROSPECT and SAILH, to simulate crop
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canopy reflectance for a wide range of both pigments and

LAI. This simulation study was carried out to test existing

vegetation indices, as well as new spectral indices devel-

oped as a part of this research, for green LAI prediction

from remotely sensed data. It allowed us to compare, on a

consistent basis, the performance of a set of indices both in

terms of their resistance to chlorophyll effects, and the

linearity of their relationships with green LAI. New spectral

indices (MTVI2, MCARI2) and corresponding novel LAI

prediction algorithms were developed, and validated on

CASI hyperspectral data sets collected during several inten-

sive field campaigns, over various crops, in three different

years. As a result of thorough analyses of both simulations

and applications to real hyperspectral data, the following

conclusions are drawn.

Overall, the most robust indices are MTVI2 and

MCARI2, which were developed in the context of this

study as best estimators of green LAI. They are modified

and improved variants of spectral indices initially designed

to measure photosynthetically active radiation related to

chlorophyll absorption (TVI and MCARI). Simulated data

have shown that MCARI2 and MTVI2 were less sensitive to

chlorophyll concentration variations, have the best linear

relationship with near-infrared canopy reflectance, and

therefore, the best linearity with green LAI.

Based on the performances of these two indices, new

algorithms were proposed to predict green LAI of crop

canopies. These novel algorithms are developed from mod-

eling and scaling-up approaches using the leaf and canopy

radiative transfer models PROSPECT and SAILH, respec-

tively. These algorithms were successfully tested with

airborne CASI hyperspectral images acquired over fields

of corn, soybean, and wheat and then validated using

ground truth data collected simultaneously to images ac-

quired at the early, mid-, and late growth stages of each of

the crops. Excellent agreements were found between mod-

eled and measured LAI, with very high determination

coefficients (r2), and very good mean root square (RMSE)

estimates. r2 values were determined as 0.98 for soybean,

0.89 for corn, and 0.74 for wheat, and with corresponding

RMSE of 0.28, 0.46, and 0.85, respectively.

Analysis based on simulated and real hyperspectral data

showed significantly greater saturation problems in the

relationships between LAI and some indices like NDVI

and MSR. In addition, the latter suffer significantly from the

strong influence of chlorophyll content variations. Other

indices such as MSAVI, SAVI, and SARVI exhibited better

performances, but they were still affected by changes at

moderate chlorophyll levels, and tended to noticeable satu-

ration for high LAI levels. Conversely, MTVI1 and

MCARI1 presented a similar behavior as their equivalents

MTVI2 and MCARI2, but tended to be extremely influ-

enced by NIR reflectance variations, leading therefore to an

overestimation of LAI.

Algorithms to predict LAI proposed in this article,

together with ground truth data, have pointed out some
limiting factors related to canopy reflectance modeling with

PROPSECT and SAILH; namely, the presence of heads in

the wheat field, and the effect of senescent and dry vege-

tation. The fact that these canopy components were not

taken into account resulted in an underestimation of total

LAI which could in turn affect estimates of biomass, carbon

assimilation, etc. Therefore, correlation coefficients and

prediction accuracy should be interpreted with caution, as

well as with regards to the specific variable the indices were

designed to measure—in this case, green LAI associated

with living leaves.

Nevertheless, one of the main conclusions of this study is

the important role of modeling based on PROSPECT and

SAILH in developing and testing various spectral indices, as

well as understanding the effect that key vegetation bio-

chemical and structural parameters have on canopy reflec-

tance. Moreover, these models were essential to the

development of predictive algorithms that could not be

efficiently designed from measurements and observations

in the field and/or laboratory. Such an approach of algorithm

development from purely simulated data, together with its

successful application to real remotely sensed data holds a

strong potential for operational quantification of vegetation

variables such as LAI and chlorophyll content. This is of

major importance for precision agriculture, and potentially,

for other vegetated environments.
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