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ABSTRACT
Color class of wheat is an important attribute for the identification of cultivars and the marketing of wheat, but is not always
easy to measure in the visible spectral range because of variation in vitreosity and surface structure of the kernels. This work
examines whether short-wavelength near infrared (SW-NIR) imaging in the range 632 - 1098 nm can be used to distinguish
different cultivars. The spectral characteristics of six hard white winter (HDWW) and hard red spring (HRS) wheats were
first studied by bulk-sample SW-NIR reflectance spectroscopy using regression analysis to select appropriate wavelengths
and sets of wavelengths. Prediction of percent red wheat was better if C-H or 0-H vibrational overtones were included in the
models in addition to the tail from the visible chromophore absorbance, apparently because the vibrational bands make it
possible to normalize the color measurement to the dry matter content of the samples. Next, a reflectance spectral image of
640 x 480 spatial pixels and 11 wavelengths was acquired for a mixture of the two contrasting wheat samples using a CCD
camera and a liquid crystal tunable filter (LCTF). The cultivars were distinguished in the image of principal component (PC)
score number two that was calculated from the spectral image. The discrimination is due to the tail from the absorbance band
that peaks in the visible. PC images 3 and 6 seem to arise mainly from 0-H and C-H bands, respectively, and it is speculated
that these spectral features will be important for generating multivariate models to predict the color class of grain. It is shown
that the contrast between the red-wheat, white-wheat and background can be increased by applying histogram equalization
and segmentation of the kernels in the images.
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1. INTRODUCTION
There are five major classes of wheat produced in significant quantities in the United States, and although several of these
products are headed for distinctly different markets and end-uses, they often pass through the same grain handling and
storage facilities. Some types of wheat mixtures do not present a problem and may even be desirable, but certain 'contrasting
classes' should be kept separate (Table 1). A small fraction of a contrasting class of wheat can have a large effect on the
milling or baking quality of the wheat and consequently its value is downgraded on the market. Because of the small
percentage differences that distinguish various grades, a large subsample, typically thousands of kernels, must be analyzed
grain-by-grain in order to get meaningful count statistics. Kernel morphology, mechanical properties, color and composition,
are single-kernel properties that can be are measured for this purpose. Color grading is currently performed by trained visual
inspection. Red wheats arise from three color-genes that produce pigmentation in the seed coat. However, the differentiation
of 'red' wheat from 'white' wheat is not always obvious, as the apparent color is a result of the combination of genetic and
environmental factors. Researchers hope to develop a practical instrumental system for color determination: two options
under development are vis-NIR spectroscopic analysis of bulk samples,' and sequential single-kernel vis-NIR reflectance.2
Spectral-imaging technology has the potential for achieving the high speed and simple sample handling attributes of the bulk
method, as well as the single-kernel classification capabilities of the sequential single-kernel instruments.

A very substantial research effort has been devoted to image analysis of grain with grayscale or color digital imaging.' The
strong point of this technology is single-kernel morphological analysis. Color analysis has had success and is most valuable
in the context of morphology. However, ROB-imaging encounters difficulties with vitreosity and the many potential
environmental influences on pigment concentration and apparent color.3
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The studies presented here investigate short-wave (SW) MR imaging. In the analytical chemistry community, the region
from the red end of the visible spectrum out to 1100 nm is referred to as the SW-NIR or the Herschel-NIR region. in contrast
'NIR' is usually understood to cover the range 1100 - 2500 nm. SW-NIR imaging may have some advantages over color
imaging for determining grain class:
• Better light penetration through surface contaminants and damaged surfaces;
• Avoidance of interfering visible absorption due to surface contaminants;
• Potential for the compensation of any effect of water content on apparent color;
• Spectro-chemical measurement of the organic matter content as the basis rather than optical scattering density;
• Possibility of measuring non-color-gene-related compositional characteristics that are indicative of grain class.
Whether or not any of these postulates have basis in fact, NIR spectral imaging technology will undoubtedly find many
applications in agriculture and elsewhere. Multivariate spectroscopy for qualitative and quantitative quality assessment is
one important technology to be adapted for this new hardware, and is a significant aspect of this study.

Table I. Definition of	g wheat class and its use in wheat grade determination.
CONTRASTING CLASS'

inter and I Durum, Hard White, Soft White, and Urn
Hard Red

Soft Red Winter
Hard White and
Soft White

rU.
U.S. No.2

S. No.3
S. No.4
S. No.5

As outlined on pages 12-1 and

Hard Red Spring, Hard Red Winter, Soft Red Winter,
Hard White, Soft White, and Unclassed Wheat
Durum and Unclassed Wheat
Durum, Hard Red Winter, Hard Red Spring,
Soft Red Winter, and Unclassed Wheat
TOLERANCE FOR CONTRASTING CLASSES
Equal to or Less Than I %
Equal to or Less Than 2 %
Equal to or Less Than 3 %
Equal to or Less Than 10 %

toor Less Than l0%	 I
GlS Grain Inspection Handbook, Book II, Grain Grading Procedures.

2. EXPERIMENTAL
Three red and three white wheat samples were obtained that had previously been analyzed by colorimetry (personal
communication, Sheldon Wishna)(Table 2). SW-MR reflectance measurements of these samples were made with an
NlRSystems model 6500 spectrometer (Perstorp Analytical, Inc., Silver Spring, MD) using the small sample cup. The
samples were repacked and scanned six times each. Chemometric analysis of this data was performed in MATLAB (The
MathWorks, Natick, MA) programming environment using the PLS_Toolbox (Eigenvector Research, Manson, WA) and
custom algorithms. Spectra images were collected with a hardware and software system designed and assembled at the
University of Georgia (Figure 1) .5 The major components include the following: a Matrox Pulsar framegrabber (Matrox
Electronic Systems, Ltd., Quebec, Canada); a National Instruments AT-MIO- I 6F-5 12-bit analog input/output board
(National Instruments Corp. Austin, TX); A DVC model DVC-10 CCD monochrome camera (DVC Company, San Diego,
CA); and a liquid crystal tunable filter (LCTF) for the range 632 - 1100 nm (Cambridge Research and Instrumentation, Inc.).
Images were acquired at 640 by 480 pixels and 8-bits of luminosity resolution relative to white Spectralon® (Labsphere,
North Sutton, NH). The system has feedback control so that the gray level of a region of interest (ROl) on the reference
surface was held constant (to 200) regardless of the wavelength setting of the LCTF. Two 300 W tungsten halogen lamps
with glass diffusers were used to illuminate the sample (Figure 1). For the spectral image scans, three-quarter inch strips of
the wheat samples were placed on a single-strength glass plate over the Spectralon® reference with strips of empty surface
and black electrical tape to serve as intensity references. All images shown are for a 50:50 mixture of FIRS 61107 and
HDWW 61435 (Table 2). The focus of the camera lens was adjusted with the LCTF set to 806 rim, and the II wavelengths
of the spectral image are 632, 664, 696, 758, 834, 876, 894, 916, 950, 990 and 1024 rim. A wavelength of 1064 rim was also
attempted, but the instrument was not sufficiently sensitive. Wavelength images beyond 900 nni appeared to be of lower
quality than other images because of the increased noise and poor focus. Image hF files were analyzed with the MATLAB
Image Processing Toolbox.
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20.7
35.7
97.0
82.7
74.0

Table 2. Wheat samples available for study.
Number Class	Type	% R

col(
61107	HRS	Red

	
93.3

60053	HRS	Red
	79.9

61102	HRS	Red
	

64.3
61435	HDWW White	3.0
59289	HDWW White	17.3
59286	HDWW White	26.0

V is

Visual
Observations
clean, uniform, smailer,some darkened germ
clean, uniform, smaller
clean, uniform, larger
clean, uniform, larger, some darkened germ
clean, uniform, larger, many darkened germ
dirty, damaged, larger, many darkened germ

Figure 1. Photograph of the SW-NIR spectral imaging system with a wheat sample in place. Two 300-W tungsten halogen
lamps illuminate the sample from oblique angles.

3. COMPARISON OF INSTRUMENTATION FOR SW-NW IMAGING AND CONVENTIONAL NW
It is instructive to compare the spectrometer used in this study (a spectral imaging system) to NIR spectrometers that have
been successfully deployed for quantitative agricultural product analyses. Table 3 is a listing of some of the major
characteristics of these systems. The low A/D resolution of he SW-NIR imager is the first difference that the spectroscopist
will notice. Many quantitative NIR analyses use every bit of that range. The problem is further compounded by the fact that
the SW-NLR will generally require a higher instrumental SIN and/or greater sample interactance to be able to use the very
weak NIR absorbances that occur in this region. However, the total performance of an instrument is also greatly affected by
sampling noise, drift between sample and reference measurements, and the degree of surface reflectance measured by the
detector. In these areas the spectral imaging system may have some advantages because of the huge number of spatially
resolved channels. For example, some channels can be used for a simultaneous reflectance reference; spatially differentiated
surface reflectance can be identified and avoided; and the imaging system is well suited to sampling a large sample surface so
that the effect of heterogeneity can be quantified. The current spectral imaging system is similar to the spectrometer systems
in some important respects: spectral resolution, acquisition time, and sampling area. Moreover, it appears that many of the
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current limits to spectral range, detector AID resolution, and noise are not due to physical limitations, but instead are related
to engineering manufacturing and economic considerations. -	-

Table 3. Comparison of the SW-NIR spectral imaging system of this study with typical characteristics of conventional NIR
spectrometers used for agricultural analysis	 I

I UIKliD Tm,,, s,ct,,.,,	W_iIJTPT An,.l,,,,,r	 XIIPD

LCTF	 grating	 grating
Method
Spectral Resolution
Infrared Source
Detection System
Detector Element Size
Detector A/D Resolution
Size of Sampling Area as
Projected onto the Detector
Number of Spatial Sample
Positions Recorded
Spectral Range (practical)
Mode of Operation (typical)
Spectral Acquisition Time
Reference Material -
Elapsed Time from
Reference to Sample
Measurement	-
Typical Sampling Thickness
Typical Sampling Area
(total)	 S.

10 run
2000 W Tungsten Halogen
Silicon CCD Array
—0025 mm square
256
—0.04 mm2

307,200

632—lO4Orim
Reflectance
—60 seconds
Spectralon®
Simultaneous,
pixels

6 n- 25 W Tungsten Halogen
• Silicon Photodiode

—1 mm square
65,536
—10 mm2

10 rim
25 W Tungsten Halogen
Single Element Lead Sulfide
4x (5 mm square)
65,536
—30 mm2

1I00-2500nm
Reflectance
—30 seconds
Ceramic
—5-60 seconds

0.1-3mm
--60 cm2 (moving sample)

850— lOSOnm
Transmission
—60 seconds
Air

but different —5-60 seconds

<0.5mm	 10-20mm
—77cm2 (stationary sample) —30 cm  (moving sample)

This is meant to describe the setup employed in this study and does not represent all technology that is available. Many of
the values are approximations that are only to be used for the purpose of contrasting the technologies.

These types of systems have been successfully applied over the last 5 to 15 years, but are not intended to rep'resent the wide
variety of NIR instruments that are currently available. Many of the values are approximated.

4. SELECTION OF WAVELENGTHS USING SW-NW REFLECTANCE OF BULK SAMPLES
By visual inspection, 'red' wheat has a reddish-brown seed coat and 'white' wheat has a pale yellow seed coat. The apparent
color saturation is very much reduced by the roughened surfaces of the kernels. This can be demonstrated by the dramatic
increase in color saturation that occurs upon hydrolyzing the surface attachment of the coat by soaking kernels iii 5 % NaOH
for 30— 60 minutes. The major absorbance band has its peak in the visible and the tail of this band is observed in the SW-
NIR (Figure 2). A complicating factor for observing the seed-coat pigmentation in this set of sampl& is the presence of
kernel damage due to shriveling or the occasional dark brown stains that were typically located on the whdat germ (Table 2).
The major type of variance among bulk reflectance spectra is offset due to differencesn light scattering (Figure 2).: This
effect will also occur in spectral images, because it is partially due to kernel orientation and surface roughness: As a result of
this phenomenon, prediction of the slope due to color using two wavelengths (or two regression factors) is much better than
using a single wavelength. Additionally, it was observed that slope by itself is not the' best measure color; the error in
predicting red color is lower if the NIR bands around 916 and 1000 nrn are inclüdèd iri'the modeC' Respectively, thes bands
are the C-H stretch 3 rd overtone vibration (from lipid, protein, carbohydrate) and the 0-H stretch second overtone (primarily
hydrated starch).6 The beneficial effect of the vibrational overtone absorptions is probably due to the ñOrmalizátiOn of the
color signal to the dry matter basis. Indeed, this may explain other peaked correlations to wheat color that have been reported
for the SW-NIR. 1	-	 . •.	 .	.

Twenty-nine wavelengths were chosen for fuithefstudyi'(Figure 3(A)); the selections were the peaks, valleys, zero-crossings
- and inflections obset'ed in ègiior vctors forfiill-ectral models predicting red color of wheat. Twenty-nine is a small

enough set that all-possiblecOmbinaiios of iitö 6 wa\'elengths could be tested by multiple linear regression for their ability
to predict the percent red color of the sample (Table"2) The results of these computations are presented in Figure 3(B)
Figure 4 and Table 4 Sets of two wavelengths perform well by em'ploying various wavelengths on the tailing of the color
absorption out to 876 nm (Figure 4(A))Y The66stpëffomiing3wa'.elenih models use a wider iaige of the spectrum, and
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tend to include two wavelengths on the strongest NIR band (e.g., 990 and 1024 nm) and the third in the color-affected region
(Figure 4(B)) The larger sets of wavelengths continue this pattern, but probably don't improve performance much over a 3-
wavelength model (Table 4). Three-wavelength models make sense in the following way: one for correction of the scatter
offset, one for measuring the quantity of pigmentation, and the third for measuring the quantity of dry matter under
observation.

0.7

0.65

0.6

0.55

- 0.45

0.4

0.35

0.3

0.25
650 700 750 800 850 900' 950 1000 1050 1100

Wavelength, nm

Figure 2. NIR reflectance spectra of three HRS (solid lines) and three HDWW (dotted lines) wheats: the samples were
scanned on an MRS model 6500 spectrometer and were repacked six times each. The vertical lines and annotation indicate
the optimal spectral regions for prediction of red color using either a two-factor (dotted lines) or four-factor partial least-
squares regression model (dashed lines). Cross-validation for estimation of the root mean-squared error (RMSECV) of
prediction of percent red color was done with one sample (6 spectra) for each data split.

Table 4. Optimal wavelength sets for determination of % red wheat from bulk sample SW-NIR by applying multiple linear
regression to all possible combinations of a subset of 29 wavelengths across the spectral range 632 - 1098 run.

21.7
2
	

6.8
	

722,834
3
	

2.8
	

684, 990, 1024
4
	

2.7
	

684,990,1030, 1064
5
	

2.5
	

696, 906, 916, 990, 1024
6
	

2.3
	

722, 894, 906, 916, 990, 1030
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Figure 3. Results of the all-possible combinations search for wavelengths to predict the red color of wheat samples: (A)
mean reflectance spectrum of the bulk wheat sample with markers indicating the set of wavelengths chosen for the search;
(B) minimum model error for 3-wavelength sets containing the indicated wavelength.

1O98	 1098	-1086 8	1086-1064	 1064	 -	 51030	 10301024	 -10	102 
4990	 990960	 960952	 -12	952950	 950

E 936	 E 936	 -10
916	 a	 -14	916	 a906	 I	906	 a894	 C'J 894-c 876	 876	 I834-16

C 8 0	 CM 834

	

6- 	
C 806-150LU796

LLJ

> 774 a'	 a.m768L B	 768758 	 U	 L	758	 I
744 	a	 74472	 72271 	a	 -22	716	a69 	 696684	 684664	-	 -24	664658	,--'658	a632	 1-26	632 •-,	6"	-.7.	894	950 1024 1098	 632	696	752	796	894	950 1024 109 8

Wavelength 2, nm	 Wavelength 3, nm

Figure 4. Error surfaces for use of multiple linear regression to predict percentage red color from all-possible combinations of
the select set of wavelengths with different set sizes: (A) two-wavelength sets, and (B) three-wavelength sets that included 990
nm. The minimum RMSEC for two-wavelength sets was 6.8, while that for the three wavelength set was 2.8.
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5. ANALYSIS OF SW-NIR SPECTRAL IMAGES
The spectra from a set of 11 wavelength images from 632 nm to 1024 run were analyzed with principal component analysis
(PCA) without any preprocessing of the data. PCA decomposes the set of 307,200 11 -point  spectra into linear combinations
of orthogonal PCs. Eight PCs were calculated, and the PC scores were examined as images, four of which are displayed in
Figure 5. The scores themselves have no units, but the relative score values are an indication of factors that are varying in the
data. PC-factor loading vectors can be examined to understand the spectral changes that produce the image contrast
(Figure 6). Loading vector plots can be though of as multivariate difference spectra for the underlying phenomenon. The
first PC loading is the average spectrum and the first score image is the average of all wavelength images. The pixel values
in the wavelength images are fractional reflectance (R) values; if transformed as —log(R), PC  of Figure 6 is similar to the
average bulk sample spectrum in Figure 3(A). The lesser attenuation at 1000 nm may be due to the image reference having
included 0-H attenuation by the supporting glass plate.

PCi	 .

Ak -

I

J )
	 H	2

4

Figure 5. Principal component score images for an 11-wavelength SW-NIR spectral image of a 50:50 mixture of HRS and
HDWW wheat. The horizontal stripes between the grain stripes are black and white reference surfaces.

The PC2 score image differentiates many of the HRS and HDWW kernels (Figure 5), and the loading plot shows that this is
primarily a result of a slope in the near-visible end of the spectrum (Figure 6). PC3 appears to have a substantial contribution
from the 0-H overtone band (Figure 6), while PC6 contrast is generated from variation in the C-H overtone region (Figure 6).
Neither the PC3 score image nor the PC6 score image shows much contrast between the two kinds of wheat, and moreover,
the surface features are more subdued than many of the wavelength images (not shown). PC4 and PC5 seemed to be due to
uneven illumination along the two spatial dimensions (data not shown). PC7 appeared to highlight saturated pixels, and PC8
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was white noise (data not shown). Very similar results were obtained if the reference surfaces were omitted from the spectral
image prior to PC analysis. Thus, C-H absorption from the black reference surface did not have any effect because the black
attenuation was even across the spectra range.

ou (Ut) IOU OUU OOU tfuv	OU 1UUU 1UU 11W
Center Wavelength of LCTF, nm

650 700 750 800 850 900 950 1000 1050 1100
Center VveIenath of LCTF. nm

bOU (UU (U tJUU öbO 900 950 1000 1050 1100
Center Wavelength of LCTF, nm

u.,v ,u, 1)v out) Ot)U OUU WOU IUUU IUOU -1 I Ut)
Center Wavelength of LCTF, nm

Figure 6. Principal component loading vectors corresponding to the PC score images in Figure 5. The ordinate values are
loading weights, which are linear combinations of the measured reflectance values for all image pixels.

PC score images do not necessarily have the most natural polarity. The negative of PC2 scores produces an image in which
the dark kernel images are red kernels and light kernel images are white kernels (Figure 7(A)). For many of the kernels, the
red-white contrast can be further improved by histogram equalization Figure 7(B). Finally, binarization was applied to one of
the wavelength images (Figure 7(C)) and this was used to code the background as gray (Figure 7(D)). The quality of the
segmentation is not great at this date. Improvements in this area will surely come when: 1) a better background is used, 2)
interpolation is used to correct the uneven illumination, and 3) morphological algorithms are used to isolate kernels.
However, a simple sum of luminosity values for each isolated kernel image may not be the best way to measure color class.
This is because the dark germ stains were detected on some white kernels (Figure 7(B)). Therefore, a classification algorithm
may need to use the kernel morphology to select the most advantageous site to sample the kernel color. This capability is a
distinct advantage over bulk or single-kernel spectroscopy, where it is difficult or impossible to control the measurement site
on the kernel.
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The wavelength sets in Table 4 have yet to be analyzed. Moreover, more sophisticated analysis needs to be done. These
preliminary results indicate that SW-NIR can generate contrast to distinguish two classes of wheat. However, this contrast is
primarily due to one type of spectral feature. Multivariate training algorithms need to be applied to utilize multiple spectral
features to classify or quantify the color of each kernel. The PC analysis also demonstrated spectral sensitivity and
discrimination of features related to dry matter content, C-H content, dark stains, surface roughness, and mirror-like surface
reflections. Multivariate models will be able to utilize the signatures of these features to better predict the color class of each
kernel in a spectral image.

i[ I

•	:	•'d	 ';q.	•	p•	 ,

ICA '	k	I
Figure 7. Enhancement and processing of images to improve discrimination of red wheat, white wheat and background: (A)
negative image of PC2 scores; (B) contrast enhancement of (A) by histogram equalization to match a flat histogram with 64
bins; (C) segmentation of a portion of the background by binarization of the 834 nm image frame using a grayscale threshold
of 30 %; and (D) contrast enhanced and segmented image with the background gray level set at 50 %.

6. CONCLUSION

Viewed as just a spectrometer, the performance of a current short-wavelength NIR spectral imaging system is substantially
poorer than conventional (non-imaging) NIR spectrometers. Nonetheless, useful spectroscopic discriminations can be
performed with the system. Hard red spring and hard white winter wheats were contrasted by multivariate analysis of
reflectance spectra in an 11-wavelength spectral image spanning the range 632 - 1024 rim. Image processing further
improved the differentiation of the cultivars, and patchy discoloration of white kernels can also be detected. Multivariate
analyses also demonstrated contrast due to 0-H and C-H vibrational overtones, uneven illumination, and saturated pixels.
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Analysis -of bulk sampls showed that vibrational overtones improve models for prediction of color class. This suggests that
a training approach to multivariate classification will produce a greater ability to differentiate color class of wheat kernels by

	

use of SW-NIR spectral imaging.	 . .	 -; 1
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